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In  this paper we use a boundary-integral technique to numerically investigate the 
motion of a viscous drop toward a fluid-fluid interface at low Reynolds number. We 
consider only the case of a drop moving toward its homophase. The solutions include 
large deformations of both the drop and interface for capillary numbers in the range 
0.2 < Ca < 10 and the viscosity ratios between 0.1 < h < 10, and illustrate the 
approach toward a film-drainage geometry for a drop which starts at a large distance 
from an initially undeformed, flat interface. We also consider briefly the effect of 
starting the drop closer to the interface. 

1. Introduction 
The dynamics of a droplet rising through an immiscible fluid toward a horizontal 

interface has been studied frequently, via both experimental and theoretical 
investigations. Interest in the problem is primarily because of its role as a simple 
model problem for coalescence. Three distinct cases can be identified : one in which 
the drop and the fluid on the other side of the interface are the same (in this case, the 
drop is said to coalesce with its homophase) ; the second where the fluid across the 
interface is not the same as the drop, but the drop is nevertheless miscible in i t ;  and 
the third case in which all three fluids are different and immiscible. The present study 
is concerned with the first of these cases, though the governing equations are initially 
posed for the most general case, the third, in anticipation of future analysis. 

In the case when fluid 1 is the same as fluid 3 (see figure l), coalescence occurs via 
a film-drainage mechanism, and earlier studies have focused completely on the 
dynamics of the film-drainage step. I n  principle, this makes the theoretical problem 
much simpler because the assumption of a thin film allows a lubrication-type analysis 
at the leading order of approximation, but knowledge of an initial film shape is 
required, and this generally must come from the dynamics that occur prior to the 
lubrication regime. Many theoretical papers have been published that analyse the 
dynamics of film drainage (cf. Charles & Mason 1960; Frankel & Mysels 1962; 
Princen 1963), including calculation of the shape of the film (Burrill & Woods 1969, 
1973; Hartland 1970; Jones & Wilson 1978), calculation of the effects of interface 
immobility due to surfactant or other mechanisms (Princen 1963; Lin & Slattery 
1982), and the effect of London-van der Waals forces (Chen, Hahn & Slattery 1984). 
I n  addition, many experimental investigations of film dynamics have also been 
reported - frequently with the drop formed and released very near to the interface. 
Allen, Charles & Mason (1961), MacKay & Mason (1963) and Princen & Mason (1965) 
used a light interference technique to measure the film thickness, and the dynamics 
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F ~ G U R E  1. Description of the coordinate system; q: origin of the local (spherical) coordinate 
system ; 0, : origin of the global (cylindrical) coordinate system. 

of the drainage process, while Hartland (1967a4, 1969) used a capacitance tech- 
nique for the same purpose, and also presented photographs of overall shapes of 
the drop near the interface. Hodgson & Woods (1969) and Burrill & Woods (1973) 
later adopted the light interference technique to study the influence of controlled 
additions of surfactant on film drainage. 

Although the literature is thus crowded with studies of the film-drainage step of 
the coalescence process, i t  is not clear that a complete picture actually results. In  all 
cases, the shape of the interfaces (and film) must depend upon the initial conditions 
(or shape at some earlier moment in time). But, experimentally, films have often 
been established by initially placing a drop very close to an interface, and i t  i s  not 
obvious how the resulting film relates to that which would occur if the drop had been 
released at a larger distance from the interface. From the theoretical point of view, 
an initial film profile (shape) must be specified - most often this is simply taken from 
an experimental observation a t  some time, to, and the theoretically predicted shapes 
a t  later times are then compared with observed shapes for the same initial 
configuration. But little emphasis has been placed on the dynamics of the processes 
which lead to the thin-film geometry, or on the dependence of the initial film 
configuration on independent parameters, such as Reynolds number, capillary 
number or viscosity ratio. The solution procedure of Lin & Slattery (1982), and later 
of Chen et al. (1984) does avoid the necessity for input of an empirical initial state, 
but only at the cost of a large number of ad hoc assumptions. The most successful 
analysis of this type is due to Jones & Wilson (1978), but their theory still requires 
the severe assumption of a quasi-static configuration. Almost all of the preceding 
theories have also analysed motion only in the thin film, with either zero tangential 
stress (' mobile ' interface) or no-slip (' immobile ' interface) conditions prescribed at 
both the drop surface and the interface between the two bulk fluids (exceptions are 
Reed, Riolo & Hartland 1974a, b ;  Riolo & Hartland 1975; Jones & Wilson 1978; 
Chen et al. 1984; and Hahn & Slattery 1985, 1986). With these boundary conditions, 
it is not possible to assess the role of the physical properties of the drop or the second 
bulk fluid, nor can any physico-chemical effect be considered which involves mass 
transport in these fluids. Many of these limitations of film theories are a consequence 
of the well-known fact that the lubrication approximation describes only the first 
term of an asymptotic series for one part of the flow domain. Without matching to 
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connect the film analysis to the overall drop shape and the flow in other parts of the 
domain, it is not possible to establish conditions, in terms of either fluidlinterface 
properties or the prior history of drop and interface shape and motion, when a 
particular version of the film theory will represent an adequate local approximation 
to the overall solution. 

In the present paper, we adopt a complementary approach that involves solu- 
tion of the complete fluid-mechanics problem, for the limiting case of small inertia 
(Re << 1). The solution of fme-boundary problems at zero Reynolds numbers via the 
so-called ‘boundary-integral ’ technique has by now become a routine and in- 
expensive means to investigate phenomena such as coalescence, with no need for 
simplifying approximations (and resultant limitations) such as those inherent in the 
film-drainage, lubrication limit. Thus, for example, Lee & Leal (1982) and Geller, Lee 
& Leal (1986) have recently used the boundary-integral technique to study the 
motion of a rigid sphere toward an initially flat, but deformable interface, with the 
qualitatively important result of identifying two distinct modes of deformation and 
breakthrough - one corresponding to ‘film drainage’ and the other to the formation 
of a highly deformed interface in which the sphere carries a layer of the original fluid 
with it across the original plane of the interface, until ‘breakthrough ’ eventually 
occurs by pinch-off of a ‘tail’ behind the sphere. The present paper reports on the 
initial phase of a complementary study of the motion of a deformable drop toward 
an initially flat interface, for the important case in which the drop and the second 
fluid are the same. In this case, the drop ultimately moves very slowly, and a thin- 
film configuration is achieved. However, we consider the ‘ complete ’ fluid-mechanics 
problem, starting with the drop at some finite distance from the interface, and 
including motion both within the drop and in the upper bulk fluid. A primary goal 
is to examine the role of interfacial tension (capillary number), and of the viscosity 
ratio in determining the interface and drop shapes, and thus the ‘shape ’ of the thin 
film. 

I n  the present work, we consider only interfacial, viscous and gravitational forces. 
London-ven der Waals and electrostatic forces will become significant when the film 
is O(1000 A) in thickness, and are likely to be responsible for the film ‘instability’ 
that finally leads to coalescence, but they are not considered here. The interface is 
also assumed to be ‘clean’ and thereby characterized completely by a constant value 
of interfacial tension. The motion, plus interface and drop shapes, are constrained to 
be axisymmetric. 

2. Problem statement 
We consider a drop of a light liquid (fluid 1) rising through an immiscible heavy 

liquid (fluid 2), toward an initially flat interface which separates the heavy bulk fluid 
(fluid 2) and another lighter bulk fluid (fluid 3),  as indicated in figure 1. All fluids are 
incompressible and Newtonian. The interfaces between fluids 1 and 2, and 2 and 3 are 
both assumed to be clean, mobile, and characterized completely by constant 
interfacial tensions, denoted respectively as y12 and y23. I n  the calculations reported 
later in this paper, we shall restrict our attention to systems for which the drop and 
the upper fluid are the same, i.e. fluid 1 = fluid 3. Here, however, we initially 
formulate the problem for the general three-fluid system. The governing equations 
and boundary conditions are identical for a heavy drop falling toward the interface 
from above. 
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We assume that the creeping-motion approximation is applicable to the motion of 
the drop, and thus neglect all inertia effects. The resulting solutions are therefore 
valid when 

(1) 
% 4 P Z  1, Re = - 

PZ 

A convenient choice for 1, is the undeformed drop radius a, and a conservative choice 
for u, is the velocity of a spherical drop of fluid 1 in an unbounded fluid 2 (hereafter 
denoted as Urn). Since the drop moves as a consequence of buoyancy, 

where 

u = -  2 ga2(p2 - P A  1 
a 9 P2 P ’  

p = ( 1 + & ) / ( 1 + ~ ) ,  A , = - - .  P1 
112 

This characteristic velocity is an upper bound on the actual velocity of the drop, 
which decreases from (2) as the drop approaches the interface. 

The governing differential equations in dimensionless form are then 

- Vpl  + A l  V2u, = 0, V - u1 = 0 for fluid 1, 

-Vp,+V2u2 = 0, V - u ,  = 0 for fluid 2 ,  

-Vp,+h,V2u,  = 0, V - u ,  = 0 for fluid 3, 

in which the characteristic pressure is taken as 

and 4 = PllP2, A, - P3l112- 
We formulate the problem in a laboratory frame of reference in which the drop 

moves with velocity U through a fluid that is stationary far from the drop, i.e. 

uz,u,+O as IxI+oo. (6) 

u, = u,, (7) 

On the interface separating fluids 2 and 3, XE&, we require 

1 1 
n3- T,-h,n,-  = n,-V-n, - -  ca, cg, hn3, 

1 ah 
n,.u, = n,-u, = -- 

~ H I  at 

In these equations, the interface is conveniently specified using a cylindrical 
coordinate system as z = h(r,  t ) ,  where z is normal to the plane of the undeformed 
interface (it is convenient to specify this plane as z = O),  and r is the radial distance 
from the axis of symmetry. The vector n, is the unit normal into fluid 2 a t  the 
interface, i.e. n, = -VH/IVH( with H = x-h(r,  t ) ,  as shown in figure 1. 

Equation (9) is the kinematic condition that relates the normal velocity 
components at  the interface to the rate of displacement of the interface above 
the undisturbed plane, z = 0. Equation (8) is the surface stress condition, and con- 
tains both continuity of tangential stress, and the normal stress balance between 
viscous and pressure stresses, and capillary and body forces. The parameter 
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Cu, is the capillary number, Cu, = p2 U,/y23, and Cg, is the body force parameter, 
Cg, = p2 U,/ga2(p2-p,). The body force terms appear in (8) because the equations 
of motion are written in terms of the dynamic pressure; i.e. the stress in (8) is the 
total stress minus the hydrostatic pressure contribution. 

In  addition to (6)-(9), boundary conditions must also be applied a t  the drop 
surface, XE&. These can be expressed in the form 

u, = u,, (10) 

1 1 
n, .T , -A ,n , .  T, = - ( V . n , ) n , - - ( - L + f c o s 8 ) n l ,  

Ca, Cg, 

n , . ( u , + g i , )  = n l . ( u 2 + g i , )  = mt. 1 ?f 

Again, these are continuity of velocity, the surface stress condition, and the 
kinematic condition. 

The kinematic condition (12) relates the rate of change of the drop shape to the 
normal velocity components a t  its surface. The most convenient way to specify the 
drop is to specify its radial dimension, as a function of the polar angle 0 shown in 
figure 1, relative to its centre of mass. I n  this case, the drop surface is given as 

(13) 

where (+s, 6 )  are components of a local spherical coordinate system whose origin is 
fixed at the centre of mass of the drop. 

It is assumed, in (13), that  the drop is axisymmetric. The unit normal at the drop 
surface, n,, is defined in terms of F as 

~ ( r " , ,  0, t )  = tS- j (e ,  t )  = 0, 

V F  
- IVFI ' 

n =- 

The distance between the centre of mass of the drop and the plape of the undisturbed 
interface, z = 0, is denoted as L(t) .  Since the shape function f (0, t )  is defined relative 
to local coordinates, fixed at the centre of mass, the right-hand side of (12) is non- 
zero only if the drop is changing shape. The velocity components n,.u, and n, .u2, on 
the other hand, are defined with respect to  a reference frame tha$ is fixed at the plane 
z = 0. Thus, in applying the kinematic condition in terms off(8, t ) ,  it is necessary to 
subtract the contribution to u,.n that is due to translation of the centre of mass with 
velocity - (aL/at) i,, as shown in (12). 

The normal stress component of the stress balance, ( l l ) ,  again contains both a 
capillary pressure contribution, and a body force contribution. The dimensionless 
parameters are Cu, E ,u2 U,/y12 and Cg, = p2 U,/gu2(p2-p,). However, it should 
be noted that Cg, can be expressed solely in terms of the viscosity ratio, A,, due to 
the definition of U, in (2) ; namely, Cg, = 2/9/3. Thus, the stress balance (1 1) can be 
written in the alternative form 

1 
nl -  T, -A, n, - T - ~ ( v - n , )  n, -$9( --L +fcos 0)  n, 

- Ca, 

and we see that the problem is completely specified in terms of the five independent 
parameters Ca,, Cu3, Cg,, A, and A,. The coefficient (-L+ f cos0) in the last term is 
the vertica! distance from the reference plane z = 0 to a point on the drop surface at 
the angle 8.  
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It is important to recognize that the equations and boundary conditions (3)-( 11)  
are sufficient to completely determine the drop velocity and pressure fields in all 
three fluids, as well as the drop shape, the interface shape and the velocity of the 
centre of mass of the drop. It is tempting to suppose that a macroscopic force balance 
must be applied in addition to these equations and boundary conditions in order to 
determine the drop velocity, since this would be true for a solid body. However, a 
solution of the creeping-flow equations (3)-(5), which satisfies the stress condition 
(1  1) or (14), will automatically satisfy the macroscopic balance between the 
buoyancy forces on the one hand, and the hydrodynamic drag on the other. This fact 
is demonstrated in the Appendix, where we show that the macro-force balance can 
be derived directly from (11) and the crecping-motion equations (3)--(5). 

3. Solution methodology 
Now, we have seen that the problem is to solve (3)-(5), subject to the conditions 

(6)-(12), to obtain velocity and pressure fields in the three fluids, as well as the drop 
velocity and shape, and the interface shape, as a function of time. Although the full 
problem is both nonlinear, and unsteady, owing to the boundary conditions (8), (9), 
( l l) ,  and (12), the governing equations are linear and the problem is ideally suited 
for solution by the well-known boundary-integral method. We follow earlier studies 
in our group, cf. Lee & Leal (1982) and Geller et al. (1986), and represent the solution 
in terms of boundary distributions of the single- and double-layer potentials for 
Stokes' equations, due to Ladyzhenskaya (1963). In this form, we can directly 
calculate the shape and motion of both the drop and the interface as a function of 
time, without the necessity of obtaining velocity or pressure fields in the three 
fluids. 

Thus, for an arbitrary point x in any one of the three fluids, we can express the 
velocity and pressure in the general forms 

where S denotes the bounding surface(s) for the fluid in question, 7 denotes a position 
on the bounding surface, n is the outer normal to this surface, and R = Ix-ql. In fluid 
2, the bounding surface, S, includes both the drop and the interface. Fluid 1 and fluid 
3 have one boundary each, the drop surface and the interface, respectively. As is well 
known, cf. Lee & Leal (1982), the double-layer potentials, i.e. the second terms in (15) 
and (16), are not continuous, but suffer a jump at the boundaries. 

To determine the unknown surface stress or velocity components which act as 
weighting functions in (15) and (16), we apply the general solutions (15) and (16) at 
the boundaries, and utilize the boundary conditions (7), (8), (lo),  and (1  1) to convert 
them to integral equations. Applying (15) a t  the boundary of fluid 1, taking account 
of the jump condition for the double-layer term, we obtain for XE&, 
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where r = x - q  and subscripts and superscripts D indicate that the variables are 
evaluated at  the drop surface. The stress tensor, Tf, is evaluated as the drop surface 
is approached from fluid 1.  Similarly, applying (15) to the body of fluid 2, we obtain 
for XE&, 

and for XES;, 

Here, subscripts and superscripts I indicate quantities evaluated a t  the bulk 
interface. Again, c and are evaluated as the drop surface or the interface is 
approached from fluid 2. Finally, applying (15) to the body of fluid 3, we obtain for 

where Ti is the stress tensor evaluated as the interface is approached from fluid 3. 
The stress at the drop surface, Tf, can be eliminated from (17) and (18) using the 

boundary condition (11) .  To do this, we add (17) and (18) together to give 

Here, the function QD(f) is the stress difference at the drop surface 

+ Kb (%)I} - !/3( - L +f cos 8) nl, (22) 

with 

Similarly, (19) and (20) can be added together to eliminate c, using the boundary 
condition (8) : 
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where Q'(h) is the stress difference a t  the interface 
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with 

Equations (18), (19), (21), and (23) are a self-contained set from which the 
unknown cornponcnts of uD, u', Tf and can be determined a t  some instant if the 
geometry of the problem-i.e. the drop position and shape and the interface 
shape - is specified at that instant. The resulting solutions satisfy all of the equations 
and boundary conditions of the problem except for the kinematic conditions (9) and 
(12). However, with u1 and uD known from the solution a t  time t ,  these conditions can 
be used to increment the locations of the drop surface and the interface to a time 
increment, At, later, thus determining a new shape and position for the drop and a 
new shape for the interface, and the process repeated. 

The kinematic condition (9) is applied in the approximate form 

where the subscript j denotes quantities that are known a t  the j t h  time step. (Later, 
more advanced versions of the numerical algorithm described here use implicit time- 
stepping schemes which allow larger time steps and increased stability.) 

The kinematic condition (12), a t  the top surface, is a little trickier to apply.'The 
problem is that the normal velocity component uD-nl contains a contribution due 
both to  the change in shape, and to  the translation of the centre of mass, i.e. 

1 af (n, - i,) + -- ah 
at ~ V F I  at 

n,.@ = -- 

and these conditions must be separated. To do this, we must apply (26) subject to the 
condition that the centre of mass of the drop remain coincident with the origin of the 
'local ' spherical coordinate system that is used to  definef, i.e. that  the centre of mass 
in this system be fixed at  the origin. In  view of the assumed axisymmetry of the drop, 
this requires 

O =  BdV,,, (27 ) s 
where z" = &* cos 6.  When (27) is expressed in terms of the local spherical coordinate 
system, and integrated in the aximuthal direction, we obtain 

Integrating once more with respect to is, and letting f = cost?, we find 

f4id< = 0. (29) I' +..1 
Hence, the kinematic condition (26) is applied in the approximate form 
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subject to the constraint (29), which can be expressed in the form 

1 j' rf, + 4 1 4  i dlj = 0, 
Q--1 
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where 
1 

A f = -[ U? +- 41 - nlj At. 
- KDj At 

The position of the centre of mass at time step j +  1 is obtained from (31). With 4+1 
known, the kinematic condition (30) then yields the shape function a t  j+ 1,  i.e. fj+l. 

A final condition on changes in the drop shape is that the volume should remain 
constant. In principal, this condition is satisfied automatically by solutions of the 
boundary-integral equations ; however, there is a well-known difficulty with spurious 
eigensolutions in the limit A, -to (cf. Youngren & Acrivos 1976), and one needs to be 
concerned with the accumulative buildup of errors, which may be very small a t  each 
time step. The constant-volume condition can be written in the form 

[f3 sin 8 dB = 2, 

and this condition was checked a t  each time step during the present calculations. The 
maximum volume change over the complete calculated trajectory was always less 
than 2% for the cases that are presented below. 

Since the drop is assumed to approach the interface symmetrically, the surface 
integrals in (18), (19), (21), and (23) can be reduced to line integrals by analytically 
integrating in the azimuthal direction. Thus, for axisymmetric flows, (18), (19), (21), 
and (23) become 

where dl, = fsin d [ fz + (ST] d8 
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and dl, = ~[l+Ey]idr. 
The quantities B and C are tensors whose elements consist of elliptic integrals 

The elements of B and C are given by Lee & Leal (1982). 
There are eight linear integral equations (33)-(36) for eight unknown functions, 

up, u:, u:, u:, TEr, TEz, Tir, and Tkz. As in the works of Lee & Leal (1982) and Geller 
et al. (1986), a collocation method was used to approximate the linear integral 
equations by a system of linear algebraic equations. To apply the collocation 
technique, the drop surface and the interface were divided into small elements so 
that uD, uI, c, Ti could be approximated as constants within each element (equal to  
the values a t  the centre of the element). Thus, we obtain a system of (aD + 4&) linear 
algebraic equations where ND and 4 are the number of elements on the drop surface 
and the interface respectively. The integrals in (33)-(36) were evaluated by Gauss 
quadrature, and the system of linear equations was solved by Gaussian elimination. 
When x+q,  the integrals in (18), (19), (21), and (23) develop an integrable 
singularity. Hence, the integrals must be evaluated analytically over a small 
neighbourhood of x and this is done using a linear expansion of the integrands (cf. 
Lee & Leal 1982; Geller et al. 1986). Finally, we note that the interface shape 
functions were approximated using a cubic spline fit through the centre of the 
surface elements, with continuity of the function and its first and second derivatives 
imposed at  the end points of each segment. 

4. Results 
In  the present study, we consider the case when fluids 1 and 3 are identical. For 

this case, Ca, = Ca, = Ca, A, = A, = A ,  and Cg, = Cg, = 2/9p. This is the system 
occurring most frequently in industrial processes (e.g. liquid-liquid extraction). 
When fluid 1 is the same as fluid 3, a slight adaptation of the macroscopic force 
balance used by Geller et al. (1986) for a solid sphere approaching an interface shows 
that coalescence must occur via a film-drainage configuration (because the density of 
fluid 1 is the same as the density of fluid 3), though this is not true in general. 

Of course, the drop shape and interface configuration a t  any instant depend on the 
initial configuration. In  the present calculations, we always initiate our solution with 
a spherical drop and a flat interface, as is appropriate for a drop that is released from 
a predetermined position into a quiescent fluid system. At the end of this paper, we 
briefly consider the influence of various starting positions on the evolution of drop 
and interface shapes. I n  this first part, however, the calculations were all initiated 
with 4=, = 3. We shall see later that this starting distance is sufficient to provide a 
good approximation of drop and interface shapes for the ‘ideal’ case, G=, = co, 
where the steady drop shape is actually spherical and the interface is undisturbed. 

When the collocation method, described in the preceeding section, is applied to the 
integral equations (33)-(36), the domain of the interface must be truncated at some 
large, but finite distance from the central symmetry axis. It was shown by Lee & Leal 
(1982) that the integrals decay like l / r 2  for large r for the case of a solid sphere 
approaching an interface. In  figure 2, -u1-n3 on the interface is plotted for the 
present problem as a function of r for two cases, Ca = 10,A = 0.1 and Ca = 10, 
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sionless radial distance, r ;  -, Ca = 10 ,A  = 0.1 ; ----, Ca = 10,A = 10. 
FIGURE 2. Dimensionless normal velocity on the interface, --u’-n,, as a function of the dimen- 

h = 10, when the domain of the interface is truncated at r = 13. It can be seen that 
u1-n3 becomes almost zero beyond r - 10 for both L = 0.01 and 3. In  the calculations 
reported later, the interface was usually truncated at r = 13. 

I n  this numerical study, the drop surface and interface were discretized into small 
elements in which uD, e, u’, 7; are constant. Non-uniform elements were used on the 
drop. For the initially spherical drop, uniform elements were used but more elements 
were added to the region where uD, varied rapidly as the drop approached the 
interface. Usually 20 elements were used for a spherical drop, and up t o  30 elements 
were used as the drop deformed. On the interface, the region close to the drop was 
discretized with smaller elements, and increasingly larger elements were used for 
larger values of r .  

Time enters the problem only through the kinematic conditions (9) and (12), whose 
treatment in the solution scheme was discussed in the preceding section. Typically, 
in the calculations reported below, time increments At varied from 0.02 to  0.06. For 
the initially spherical drop at I!&, = 3, the value At = 0.06 was adequate. However, as 
the drop approached the interface, shorter time steps were necessary. When a shorter 
time step was introduced, calculations were repeated using the shorter time step for 
a moderate overlap region with the old larger time step. If the difference in the shapes 
was greater than 2 YO, then the overlap region was increased until the difference was 
2 YO or less. Eventually, the continual decrease in At, and the rapidly decreasing rate 
of droplet or interface motion, caused us to reach a point of sufficiently diminished 
return that the calculations were stopped. Generally speaking, this occurred when 
the minimum film thickness in the region between the drop and the interface was less 
than 20 % of the undeformed drop radius. In fact, the final film thickness was usually 
considerably smaller than this, and only decreasing extremely slowly when the 
calculations were terminated. Nevertheless, these ‘films ’ are still somewhat thicker 
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than the intended regime of the ‘film-drainage’ models (cf. Lin & Slattery 1982), and 
this makes direct comparison with these theories difficult. We view the present 
results as complementary to those obtained via film-drainage calculations, and likely 
to be indicative of the qualitative connection between ‘initial’ film geometry and the 
independent dimensionless parameters A and Ca. Of course, the film geometry, in the 
present case, is completely determined by the prior history of motion and the initial 
configuration. In  addition, we consider the complete drop and interface shapes and 
allow for fluid motion in all parts of the domain. 

4.1. The eflects of A and Ca 
Calculations were carried out for cases when h = 0.1,1,10 and Ca = 0.2,1,10. The 
initial position of the drop is 3 radii away from the interface. Resulting shapes as the 
drop approaches the interface are shown in figures 3, 4, and 5. The film thickness a t  
the symmetry line, Ken, and tho minimum film thickness, Kin, are plotted against 
time, t ,  in figure 6. I n  figure 7, drop velocities are plotted against L as the drop 
approaches the interface. I n  figures 4 and 5, the drop and interface shapes are drawn 
for three distances, L ,  relative to the interface, L = 1.0,0.5,0.01 when Ca = 1.0 and 
10. In figure 3, when Ca = 0.2, the dotted lines represent L = 0.36,0.29,0.28 for 
h = 0.1,1,10 respectively because L = 0.01 cannot be reached by the drop in 
this case. 

The change most obvious in figures 3-5 is the increasing degree of deformation for 
larger values of Ca a t  a particular fixed value of A, and the qualitative shift in the 
mode of deformation from drops which are flattened in the front and relatively 
undeformed at  the back for Ca = 0.2, to  shapes which are flattened (and even 
indented) a t  the back and relatively undeformed a t  the front for Ca = 10. The 
mechanism for the first mode of deformation seems relatively obvious, a t  least 
qualitatively. However, the mechanism for indentation at the back in this zero- 
Reynolds-number flow is not clear to us at this time. 

Although the changes in drop shape with Ca are amusing, the dependence of drop 
shape on the viscosity ratio for fixed Ca is of more interest in the context of previous 
studies of film-drainage geometries. I n  particular, for each of the three values of Ca 
studied, careful examination of figures 3-5 reveals three quite distinct types of film 
geometry (and thus, presumably, three distinct modes of film drainage, though one 
must be somewhat cautious on this owing to the relatively thick films produced). I n  
the first type, which appears for all three Ca values at A = 0.1, the film between the 
drop and the interface is thinnest a t  r = 0, and the film thickness increases 
monotonically as r increases. This type of film profile is often associated with ‘rapid 
drainage’ and occurs in the present case for systems with low A,  for which the drop 
does approach the interface faster than for high-A systems. For h = 1.0, the variation 
of the film thickness with r is so slight that the film appears to be almost uniform in 
thickness up to some radius, and the film drains almost uniformly as the drop moves 
closer to the interface. For instance, the film has uniform thickness between 0 d r < 
0.7 for Ca = 0.2. Finally, for A = 10, dimpled drainage occurs in which the film is 
thinnest at  a rim of finite radius, rather than a t  the centre T = 0. For example, for 
Ca = 0.2, the film is thinnest a t  r x 0.66. This is also shown in figure 6 where the 
dotted line for Hmin diverges from the solid line for Ken at  t = 7.72. When the 
minimum thickness occurs at the rim, experimental studies of Charles & Mason 
(1960), Hodgson & Woods (1969), and Burrill & Woods (1973) show that rupture 
normally occurs off-centre as a consequence of an apparent physico-chemical 
instability. 
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FIGURE 3. Shapes of the drop and the interface for Cu = 0.2 and (a )  A = 0.1, ( b )  1.0, ( e )  10; -, 
L = 1.0 (all A ) ;  ----, L = 0.5 (all A ) ;  - - -  -, L = 0.36,0.29,0.28 (for A = O . l , l . O ,  10 respectively). 

All three modes of film drainage described above have been observed experi- 
mentally by Hodgson & Woods (1969) and Burrill & Woods (1973) for fluid 
systems with surfactants. However, these authors attributed the different modes to 
different levels of mobility of the interface( s). Film-drainage theories with complete 
slip (zero tangential shear stress) applied a t  the boundaries predict drainage with the 
minimum film thickness at the symmetry axis, while film-drainage theories with no- 
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FIGURE 4. Shapes of the drop and the interface for Cu = 1 and (a) h = 0.1, (b)  1.0; ( c )  10; 
-, L = 1.0; ----, L = 0.5; - - - - )  L = 0.01. 

slip conditions at the film boundaries yield a film configuration with the point of 
minimum thickness on a ring away from the symmetry axis. This is not inconsistent 
with the experimental observations for surfactant systems cited above, but the 
present results show that high-viscosity fluids in the drop and its bulk homophase 
can also lead to the dimpled film configuration. Indeed, comparison with the 
calculations of Geller et al. (1986) for a solid sphere approaching an interface shows 
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that a ‘dimpled film’ configuration also occurs in that case even when the fluid across 
the interface has a low viscosity, cf. the resuts for h = 0.022, Ca = 0.464, Cg = 0.089 
(figures 16 and 17 of Geller et al.) which can be compared with the present results for 
h = 0.1, Ca = 0.2 (and Cg = 2/9p = 0.32) where we obtained a minimum film 
thickness a t  the symmetry axis. Thus, apparently, immobilization of even one side 
of the film is sufficient to produce a transition from the ‘rapid ’ drainage mode to the 
‘dimpled ’ drainage configuration. 
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FIGURE 6. Dimensionless film thickness at the centreline, H,,,, and at the rim, kin, as a function 
of the  dimensionless time. -, In&,, for Cu = 0.2; ----, 1nHcen for Cu = 10; . . . . * ,  

The main practical significance of the ‘ dimpled ’ configuration is that film drainage 
occurs more slowly than when the thinnest part of the film is at the symmetry axis, 
and thus, all else being equal, the coalescence process is inhibited. This is illustrated 
in figure 6, which shows that the rate of film thinning for h = 10 is always 
smaller than for h = 0.1 or 1. This is primarily a consequence of the differences in 
film geometry. (The timescale inherent in figure 6 includes the difference in 
characteristic velocity of the drop for the different values of h. )  It will be noted that 
the results in figure 6 have been presented in the form of a log-log plot. This is done 
in an attempt to  provide a qualitative basis for comparison with one of the 
predictions from thc ‘film drainage’ analysis of Jones & Wilson (1978), namely that 
the film thickness should decrease at  a rate proportional to tWm where m = a for a film 
between two solid surfaces, and m = for two free surfaces (zero tangential stress) in 
the absence of gravity (i.e. no hydrostatic pressure variations). Thus, if the film 
produced in the present theory were sufficiently thin, and if the quasi-static and 
other approximations of the Jones-Wilson analysis were valid, we should expect a 
final asymptotic slope between -$ and -: for the results shown in figure 6. 
Unfortunately, though the final calculated slopes are definitely between 0 and - 1 in 
most cases for h = 1 and 10, we cannot make a stronger statement from the 
numerical results available. The slope for h = 0.1 is definitely larger than - 1, but it 
is doubtful whether the quasi-static approximation should apply to the ‘fast- 
drainage ’ case, and this is seemingly corroborated by the fact that we never achieve 
the ‘dimpled film’ configuration in that case. 

One important qualitative conclusion from the present results is that the ‘dimpled 
film’ configuration can be promoted (and thus coalescence inhibited) not only via 
surfactant immobilization of the interfaces, but also by decrease of the viscosity of 
the suspending fluid. It may be seen, upon closer examination of figure 6, that the 
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FIGURE 7. Dimensionless velocity of the centre of mass of the drop IdLldtl, as a function of the 
dimensionless distance of the centre of mass of the drop from the undeformed flat surface, L ; -, 
Ca = 0.2; ----, Ca = 1.0; - - - - ,  Ca = 10. Also, ---, solid sphere, non-deforming free interface; 

, solid sphere, solid wall. 

variation in A not only changes the relative rates of film drainage, but also exerts a 
strong influence on the ‘quasi-asymptotic’ film thicknesses that appears for large t. 
In particular, larger values of h are not only associated with slower drainage but also 
larger ‘ asymptotic ’ film thickness, which again will tend to inhibit coalescence. 

Finally, for completeness we show in figure 7,  the dimensionless velocity of the 
centre of mass of the drop as it approaches the interface. Also shown for comparison 
is the velocity of a solid sphere approaching a solid wall, and a solid sphere 
approaching a non-deforming free surface with A = 0, both taken from the analytical 
results of Brenner (1961). In all cases, i.e. for all A and Cu, the drop velocity rapidly 
approaches zero as the centre of mass crosses the plane of the undeformed interface. 
However, this is only partially due to hydrodynamic interaction between the drop 
and the interface. Since the density of the drop and its homophase are equal, the 
driving force for motion goes rapidly to zero as L+O. However, for L > 1.0, the 
primary influence on drop velocity is the hydrodynamic interaction between the drop 
and the deforming interface. In all cases shown in figure 7, the velocity is non- 
dimensionalized so that it will approach unity for L + a. Thus, for the drops, we 
use 

where 

with the solid-sphere results corresponding to p = l (h+ a). Thus, all of the 
difference between the various results is a consequence of differences in the degree of 
hydrodynamic interaction between the drop and the interface. We see that the 
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FIGURE 8. Shapes of the drop and the interface for Ca = 2.0, A = 0.5; -- --, I+=, = 1.2; -, 
l & = 3 ;  - - - - , 4 = , = 7 .  

deformation of the drop and interface greatly reduces the magnitude of the ‘wall 
effect’, especially for the smaller values of A,  relative to that for a solid sphere. Of 
course, the solid sphere is geometrically constrained from passing across the plane 
z = 0, whereas the drop can do so, both because of interface deformation and because 
the drop flattens out, and this is a major contributor to the differences in results for 
L < 1.0. However, the weaker ‘ wall ’ effects for larger L are a consequence of modified 
hydrodynamic interaction, rather than simple geometric constraints. There are two 
main sources of the decreased magnitude of hydrodynamic interaction that is 
evident in figure 7 .  First, the interface is mobile, and thus moves in the same 
direction as the drop. Second, as it becomes deformed, i t  lies further from the drop 
for a given value of L than it would if it remained flat. I n  the cases considered here, 
i t  is primarily the first of these mechanisms that contributes to the weaker effect of 
the interface on the drop relative to the results shown for the sphere. To see that this 
is the case, we need only recall that the results for L = 3 are all for a flat interface 
and a spherical drop. The differences for various h values at this point are therefore 
a reflection only of the increase in velocity of the interface away from the drop as h 
is decreased. 

The primary influence of Ca on drop velocity occurs for the smallest value, Ca = 
0.2,  and then primarily when the interface and drop become quite strongly deformed. 
A t  this point, the relatively strong capillary effect resists additional deformation and 
the very small drop velocity becomes primarily dependent upon Ca. The fact that 
there is no influence of Ca on the results for L = 3 is a consequence of the fact that 
the interface is flat a t  t = 0. Thus, initially, capillary forces play no role in its 
deformation. Capillary forces do play a role in the drop deformation from the initial 
spherical shape but this is apparently a minor effect for L - 3. 

4.2. The effect of initial conjguration 
The initial configuration considered in all of the preceding results was a spherical 
drop initially situated with its centre a t  a distance 4=o = 3 from a flat interface. This 



Motion of a viscous drop toward a Jluid interface 141 

2 

1 

- 1  

-2 

.u1 

L = 1.0 

- 3  1 I I I I I I I 
0 1 2 3 4 -4 -3 -2 - 1  
r 

FIGURE 9. Shapes of the drop and the interface for Ca = 2.0,h = 10; - -  --, I+,, = 1.2; 
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FIGURE 10. Dimensionless velocity of the centre of mass of the drop, IdL/dtl, as a function of the 
dimensionless distance of the centre of mass of the drop from the undeformed flat interface, L, for 
Ca = 2.0, h = 0.5. 

configuration was chosen as a compromise between the ideal of a very large initial 
distance between the drop and the interface, where the spherical drop and flat 
interfaces shapes are asymptotically exact, and the necessity for reasonable overall 
computation times. It is, of course, known that the solution of the problem (3)-( 12) 
is strictly dependent upon initial conditions for all time. What is not known is 
the sensitivity of the solution to changes in initial conditions. To justify the choice 
L,=, = 3, it is necessary to consider the effect of initial conditions on the interface and 
drop shapes and motion. It is to be hoped that the results for b=o = 3 are at least 
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FIGUKE 1 1 .  Comparison of the calculated shapes of the drop and thr interface with the 
experimental photographs; -. L = 1 . 0 ;  -- -. L = 0 5 ;  - - - -, T, = 0 01. 

qualitatively representative of behaviour for a reasonably wide range of initial 
conditions. From a more general point of view, many experimental studies of film 
drainage have been initiated with the drop released vcry close to the interface and 
i t  is of interest to determine whether this initial configuration alters the film 
geomctry in any fundamental way. 

We consider two cases Ca = 2.0, h = 0.5 and Ca = 2.0, h = 10, each for three 
different initial positions of the drop, I+,, = 1.2, 3 and 7, respectively. The shape of 
the drop and interface is shown in figures 8 and 9 for L = 1 .O and 0.01. It can be seen 
in both cases that the drop shapes a t  L = 0.01 become identical for the two initial 
positions, 4=, = 3 and 7. However, for L+=o = 1.2 the drop and interface shapes at 
L = 0.001 differ significantly from the shapes for I+-o = 3 and 7,  particularly for h = 
0.5. In  this case, there is a qualitative change in the film profile from one with nearly 
constant thickness for L+=, 2 3, to  a film of the ‘rapid ’ drainage type which is very 
thin a t  the axis of symmetry for L+=, = 1.2. Since the drop velocity is very small for 
L = 0.01 (cf. figure 7),  and coalescence will occur primarily as a consequence of 
drainage from the thin film, this change in film geometry (especially the major 
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decrease in minimum film thickness) will produce important changes in the dynamics 
of the coalescence process. The sensitivity of the film geometry to the initial 
configuration displayed in figure 8 suggests that considerable care should be taken in 
the interpretation of experimental studies where the drop is started close to the 
interface. 

Another indication that the results for &=,, = 3 are representative of larger values 
of 4-o is shown in figure 10, where we plot the velocity of the centre of mass versus 
position for Ca = 2.0, h = 0.5 and three initial configurations with L+=, = 3, 5 and 7 .  
As can be seen, the velocities become identical for all three cases for L < 0.7. 

4.3. Comparison with experimental results 

Calculations were carried out for two cases to compare present theoretical results 
with the previously published experimental results of Hartland (1967 b, 1969). 
In  figure 11, the shapes of the drop and interface for the two cases when Ca = 0.5, 
A = 5.0 and Ca = 1.0, h = 0.02 are compared with experimental photographs due to 
Hartland. In  these experimental investigations, the drop was formed a t  the tip of a 
needle very close to the interface. Thus the drop was already deformed during the 
formation a t  the tip prior to release from the needle. However, current calculations 
were started with a spherical drop 3 radii away from a flat interface. Therefore, a 
quantitative comparison of the result would not be expected to add much to our 
understanding. However, our present results agree well, on a qualitative basis, with 
Hartland’s results. Particularly, in figure 11 ( b )  the film drains uniformly, while in 
figure 11 (a )  a ‘dimple ’ occurs so that the film is thinnest in the region away from the 
central symmetry axis. 

5. Conclusions 
In this paper, we have studied the motion of a viscous deformable drop a t  low 

Reynolds number toward an initially flat fluid interface, for the special case in which 
the drop and the second bulk fluid are identical. Although many previous 
investigators have studied the same problem using film-drainage theories, these are 
usually limited to either no-slip (immobile interface) or zero tangential stress (mobile 
interface) conditions on the drop surface and the interface, and thus cannot reveal 
the effect of the bulk fluid properties inside the drop or in the second bulk fluid. 
Furthermore, such studies generally consider only the last stages of dropinterface 
interactions starting from an assumed initial film geometry. The present solu- 
tions are complementary to the film-drainage theories in the sense that they are 
numerically exact, starting with the drop at  a large distance from the interface, and 
provide insight into the dependence of the initial film geometry on the capillary 
number and viscosity ratio. 

The most significant result of our calculations is the fact that three distinct types 
of film geometry arise as a result of variations of the viscosity ratio between the drop 
(and the upper bulk fluid) and the lower bulk fluid, corresponding to three 
mechanisms of film drainage. For h = 0.1, we find that ‘rapid’ drainage occurs, while 
‘ uniform ’ drainage occurs for h = 1 .O.  ‘ Dimpled ’ drainage, where the minimum film 
thickness appears a t  the rim, occurs for h = 10. Similar drainage patterns were 
observed experimentally by Hodgson & Woods (1969) and Burrill & Woods (1973) 
by varying the concentration of surfactants. However, the current study illustrates 
that these different patterns can also arise for clean interfaces due solely to changes 
in the bulk viscosity ratio. 
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The majority of existing film-drainage theories, on the other hand, are basd upon 
a dimpled film configuration, either as an initial ad hoc assumption (cf. Lin & Slattery 
1982) or as a consequence of a ‘quasi-equilibrium’ assumption (cf. Jones 81, Wilson 
1978) in which pressure variations arise owing solely to hydrostatic and capillary 
effects. It is perhaps not surprising that the latter analysis seems to become 
increasingly relevant as h increases, and that the ‘ quasi-equilibrium ’ approximation 
(with resultant ‘dimpled film ’) does not seem to apply a t  all for h = 0.1, even though 
Re = 0 for the range of film configurations considered. It is, of course, possible that 
the ‘rapid draining geometries obtained for the smaller h will eventually revert to 
a dimpled film since velocities are becoming very small for L x 0, but if this occurs, 
it must only be relevant for much thinner films than those illustrated in figures 3-5. 
Whether such films can (or will) be achieved in reality depends on their stability, and 
thus on their thickness relative to the distance of action of van der Waals and other 
non-hydrodynamic forces, and is not a question that can be answered here. 

Since the dimpled drainage pattern is intrinsically slower than drainage from a film 
with the minimum film thickness at the axis of symmetry, it may be advantageous 
to attempt to promote this mode if it  is desired to minimize coalescence rates, or vice 
versa if rapid coalescence is desired. The present results indicate that the dimpled 
film configuration is unavoidable for viscous drops ( A  > 1) independent of whether 
the interfaces are mobile or immobile. For less viscous drops ( A  < l) ,  on the other 
hand, it may be possible to control the drainage mode through the level of surfactant 
that is present. 

This work was supported by the fluid mechanics program of the National Science 
Foundation. The work was completed while L. G. Leal was a visitor in Chemical 
Engineering a t  the Massachusetts Institute of Technology. We wish to thank these 
institutions for support of this research. 

Appendix 
I n  the dimensional form, equation (11) is 

Rearranging (A l), we obtain 

Then, the drag force on the drop is 

Applying the divergence theorem to the first term of the right-hand side of (A 3),  it  
can be shown that 

n,-T,dS, = V.T,dV, = 0 (A 4) I 
O . T , = 0  

I 
because 

for Stokes equations. 

theorem states that for any scalar function 9 on a surface 8 
Now, consider the second term of the right-hand side (A 3). The surface divergence 
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where C denotes any closed curve on the surface S,  and t denotes the unit vector that 
is normal to the curve C and tangent to the surface a t  each point. Then, by applying 
the surface divergence theorem, the second term of the right-hand side of (A3) 
becomes r r r 

The first term of the right-hand side of (A 6) is zero because Vy,, = 0 for constant 
yl,. And the second term of the right-hand side of (A 6) is zero because 

fcYI2fdl = 0 

for a closed volume. Finally, applying the divergence theorem to the third term on 
the right-hand side of (A 3), ,. 

The right-hand side of (A 7) is then 
r 

where a is the undeformed drop radius. Thus, the third term of the right-hand side 
of (A 3) is just the buoyancy force acting on the drop. Combining (A 3), (A 4), (A 5 ) ,  
and (A 8), we therefore see that a solution of the creeping motion which satisfies the 
stress boundary conditions (A 1)  automatically satisfies a macroscopic force balance 
on the drop, in which the hydrodynamic force FD is just balanced by the buoyancy 
force. 
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